skip to main content


Search for: All records

Creators/Authors contains: "Shantz, Andrew A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. null (Ed.)
  4. Climate change is increasing the frequency and magnitude of temperature anomalies that cause coral bleaching, leading to widespread mortality of stony corals that can fundamentally alter reef structure and function. However, bleaching often is spatially variable for a given heat stress event, and drivers of this heterogeneity are not well resolved. While small-scale experiments have shown that excess nitrogen can increase the susceptibility of a coral colony to bleaching, we lack evidence that heterogeneity in nitrogen pollution can shape spatial patterns of coral bleaching across a seascape. Using island-wide surveys of coral bleaching and nitrogen availability within a Bayesian hierarchical modeling framework, we tested the hypothesis that excess nitrogen interacts with temperature anomalies to alter coral bleaching for the two dominant genera of branching corals in Moorea, French Polynesia. For both coral genera,PocilloporaandAcropora, heat stress primarily drove bleaching prevalence (i.e., the proportion of colonies on a reef that bleached). In contrast, the severity of bleaching (i.e., the proportion of an individual colony that bleached) was positively associated with both heat stress and nitrogen availability for both genera. Importantly, nitrogen interacted with heat stress to increase bleaching severity up to twofold when nitrogen was high and heat stress was relatively low. Our finding that excess nitrogen can trigger severe bleaching even under relatively low heat stress implies that mitigating nutrient pollution may enhance the resilience of coral communities in the face of mounting stresses from global climate change.

     
    more » « less
  5. null (Ed.)
  6. Abstract

    By the century's end, many tropical seas will reach temperatures exceeding most coral species' thermal tolerance on an annual basis. The persistence of corals in these regions will, therefore, depend on their abilities to tolerate recurrent thermal stress. Although ecologists have long recognized that positive interspecific interactions can ameliorate environmental stress to expand the realized niche of plants and animals, coral bleaching studies have largely overlooked how interactions with community members outside of the coral holobiont shape the bleaching response. Here, we subjected a common coral,Pocillopora grandis, to 10 days of thermal stress in aquaria with and without the damselfishDascyllus flavicaudus(yellowtail dascyllus), which commonly shelter within these corals, to examine how interactions with damselfish impacted coral thermal tolerance. Corals often benefit from nutrients excreted by animals they interact with and prior to thermal stress, corals grown with damselfish showed improved photophysiology (Fv/Fm) and developed larger endosymbiont populations. When exposed to thermal stress, corals with fish performed as well as control corals maintained at ambient temperatures without fish. In contrast, corals exposed to thermal stress without fish experienced photophysiological impairment, a more than 50% decline in endosymbiont density, and a 36% decrease in tissue protein content. At the end of the experiment, thermal stress caused average calcification rates to decrease by over 80% when damselfish were absent but increase nearly 25% when damselfish were present. Our study indicates that damselfish‐derived nutrients can increase coral thermal tolerance and are consistent with the Stress Gradient Hypothesis, which predicts that positive interactions become increasingly important for structuring communities as environmental stress increases. Because warming of just a few degrees can exceed corals' temperature tolerance to trigger bleaching and mortality, positive interactions could play a critical role in maintaining some coral species in warming regions until climate change is aggressively addressed.

     
    more » « less
  7. Abstract

    Bacterial symbionts are integral to the health and homeostasis of invertebrate hosts. Notably, members of the Rickettsiales genus Wolbachia influence several aspects of the fitness and evolution of their terrestrial hosts, but few analogous partnerships have been found in marine systems. We report here the genome, phylogenetics, and biogeography of a ubiquitous and novel Rickettsiales species that primarily associates with marine organisms. We previously showed that this bacterium was found in scleractinian corals, responds to nutrient exposure, and is associated with reduced host growth and increased mortality. This bacterium, like other Rickettsiales, has a reduced genome indicative of a parasitic lifestyle. Phylogenetic analysis places this Rickettsiales within a new genus we define as “Candidatus Aquarickettsia.” Using data from the Earth Microbiome Project and SRA databases, we also demonstrate that members of “Ca. Aquarickettsia” are found globally in dozens of invertebrate lineages. The coral-associated “Candidatus A. rohweri” is the first finished genome in this new clade. “Ca. A. rohweri” lacks genes to synthesize most sugars and amino acids but possesses several genes linked to pathogenicity including Tlc, an antiporter that exchanges host ATP for ADP, and a complete Type IV secretion system. Despite its inability to metabolize nitrogen, “Ca. A. rohweri” possesses the NtrY-NtrX two-component system involved in sensing and responding to extracellular nitrogen. Given these data, along with visualization of the parasite in host tissues, we hypothesize that “Ca. A. rohweri” reduces coral health by consuming host nutrients and energy, thus weakening and eventually killing host cells. Last, we hypothesize that nutrient enrichment, which is increasingly common on coral reefs, encourages unrestricted growth of “Ca. A. rohweri” in its host by providing abundant N-rich metabolites to be scavenged.

     
    more » « less
  8. The global decline of corals has created an urgent need for effective, science‐based methods to augment coral populations and restore important ecosystem functions. To meet this challenge, the field of coral restoration has rapidly evolved over the past decade. However, despite widespread efforts to outplant corals and monitor survivorship, there is a shortage of information on the effects of coral restoration on reef communities or important ecosystem functions. To fill this knowledge gap, we examined the effects of restoration on three major criteria: diversity, community structure, and ecological processes. We conducted surveys of four restored sites in the Florida Keys ranging in restoration effort (500–2,300 corals outplanted) paired with surveys of nearby, unmanipulated control sites. Coral restoration successfully enhanced coral populations, increasing coral cover 4‐fold, but manifested in limited differences in coral and fish communities. Some restored sites had higher abundance of herbivorous fish, rates of herbivory, or more juvenile‐sized corals, but these effects were limited to individual reefs. Damselfish were consistently more abundant at restored compared to control sites. Despite augmenting target coral populations, 3 years of coral restoration has not facilitated many of the positive feedbacks that help reinforce coral success. In a time of increasingly frequent disturbances, it is urgent we hasten the speed at which reefs recover important ecological processes, such as herbivory and nutrient cycling, that make reefs more resistant and resilient if we are to achieve long‐term restoration success.

     
    more » « less